Robust and flexible smart silk/PEDOT conductive fibers as wearable sensor for personal health management and information transmission
XLili Xing, Yirong Wang, Jin Cheng, Guoqiang Chen, Tieling Xing*
National Engineering Laboratory of Modern Silk, Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Reduction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
Flexible highly conductive fibers have attracted much attention due to their great potential in the field of wearable electronic devices. In this work, silk/PEDOT conductive fibers with a resistivity of 1.73 Ω⋅cm were obtained by oxidizing Ce3+ with H2O2 under alkaline conditions to produce CeO2 and further promote the in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) on the surface of silk fibers. The morphology and chemical composition of the silk/PEDOT conductive fibers were characterized and the results confirmed that a large amount of polythiophene was synthesized and deposited on the surface of silk fibers. The conductivity and electrochemical property stability of the silk/PEDOT conductive fibers were evaluated by soaping and organic solvent immersion, and the conductive silk fibers exhibited excellent environmental stability and durability. The silk/PEDOT conductive fibers show good pressure sensing and strain sensing performance, which exhibits high sensitivity, fast response and cyclability, and have excellent applications in personal health monitoring, humanmachine information transmission, etc.

https://doi.org/10.1016/j.ijbiomac.2023.125870
Volume 248, 1 September 2023, 125870